Silicon Carbide Nanoparticles Nano SiC Powder CAS 409-21-2
Categories

Nanoparticles

Silicon Carbide Nanoparticles Nano SiC Powder CAS 409-21-2
  • Silicon Carbide Nanoparticles Nano SiC Powder CAS 409-21-2

Silicon Carbide Nanoparticles Nano SiC Powder CAS 409-21-2

Item No.: Tr- SiC nanoparticles Silicon carbide nanoparticles are with high purity, small particle size distribution range and high specific surface area. It has excellent thermal conductivity and can resist oxidation at high temperatures.Purity: 99%Particle Size: 60nm, 500nm

About Silicon Carbide Nanoparticles Nano SiC Powder

Silicon Carbide( SiC ) Nanopowder, A grey-white powder composed of silicon carbide particles with diameters averaging 40nm. This material is known for its stability, refractory properties, wear resistance, thermal conductivity, small thermal expansion coefficient, and resistance to oxidation at high temperatures. These traits make it ideal for applications across a wide range of domains, with more being uncovered by the research of academics and engineers with each passing year.

As an important refractory material, nano-SiC is not flammable and chemically stable at high temperatures. Research on this topic shows that SiC nano paper is very stable when heated with an alcohol lamp. Due to the properties of SiC material, SiC nano paper has excellent non-combustibility, fire resistance and thermal stability. This independent feature has enlightening potential applications in improving the ablation resistance of high-temperature ceramic composites and high-temperature exhaust gas filtration and dust filters. Feel free to send an inquiry to get the latest price if you would like to buy Silicon Carbide Nanoparticles Nano SiC Powder in bulk.

 

Product Performance of Silicon Carbide Nanoparticles Nano SiC Powder

Silicon carbide nanoparticles ( CAS 409-21-2 ) has high purity, small particle size, uniform distribution, large specific surface area, high surface activity, and low bulk density. It has excellent mechanical, thermal, electrical, and chemical properties. It has high hardness, high wear resistance, and good Self-lubricating, high thermal conductivity, low thermal expansion coefficient and high-temperature strength.

 

How is Silicon Carbide Nanoparticles Nano SiC Powder produced?

An organic-inorganic precursor is synthesized from industrial silica sol and water-soluble phenolic resin to prepare silicon carbide nanopowder. After high-temperature heat treatment, silicon carbide nanopowder is prepared through a carbothermic reduction reaction. The thermal decomposition process and preparation process of the precursor are analyzed. Silicon carbide nanopowder has more applications due to its smaller size.

 

Studies have shown that the preparation process of the product is simple, and it is a mixture of high-purity nano silicon carbide powder and silicon carbide whiskers. In the research of researchers from Northwestern Polytechnical University, NANO-SiC powder was synthesized by CARBO-THERMAL reduction method and its dielectric parameters in the frequency range of 8.2 to 12.4 GHz were measured. By changing the aluminum content and reaction atmosphere, β, 12H and 21R silicon carbide powders are obtained. Although the solid solution of Al and N will resist the resistance of SiC powder, the relative dielectric constant ε'r=30-50 of SiC powder is much higher than that of α-SiC powder, and the dielectric loss tangent (tgδ=~0.7). Polyacrylate/nano-SiO2 composite material has excellent film-forming properties, weather resistance, adhesion and high hardness, abrasion resistance and ultraviolet resistance of inorganic nanopowder.

 

Technical Parameter of Silicon Carbide Nanoparticles Nano SiC Powder

Product Name

MF

Purity

Particle Size

Crystal Form

SSA

Color

Silicon Carbide Nanoparticles

SiC

99%

60nm, 500nm

Cubic

29m2/g

Gray green

 

Application of Silicon Carbide Nanoparticles Nano SiC Powder

Silicon carbide nanopowder has become the most commonly used material in structural ceramic applications. As an alternative to thermal expansion, higher strength weight percentage, higher variability, hardness, wear resistance and corrosion resistance, and most importantly, maintaining elasticity at temperatures up to 1650°C, these characteristics lead to a wide range of applications.

1.Ceramics

This nanopowder is used extensively in the production of high-frequency ceramic, heat resistant ceramic parts, textile ceramics,

and various other ceramic materials.

2.Abrasives

This material can be used to produce various abrasive surfaces and substances, including polishing abrasives, the surfaces of grinding tools, actual grinding materials, and related products.

3.Heat-resistant devices

High-temperature spray nozzles such as those used in aeronautics, heating elements, sealing valves, and other mechanical products intended to resist extreme temperatures utilize this material in their construction.

4.Rubber production

Rubber tires and other rubbers exposed to high temperatures and large amounts of wear take advantage of the properties of this nanoparticle.

5.Specialty coatings

Like many nanomaterials, silicon carbide can be used to produce countless specialty coatings, imparting some or all of its traits to the coated surface. Applications of this nature include abrasive surfaces, mirror coatings for UV resistance, and many others.

6.Their operations are more suitable for low-temperature wear than for high-temperature behavior. The uses of SiC include sandblasting injectors, automotive water pump seals, bearings, pump components and extrusion dies. These dies use silicon for their high hardness, wear-resistance and carbide corrosion resistance.

7.The structural use at high temperature extends from the throat of the rocket jet to the furnace roll, and the components of the exchange exchanger tube are made of silicon carbide with a combination of high strain rate, hardness and high-temperature stability.

8.This kind of heat-resistant ceramic has thermal shock resistance and high asynchrony, which is very suitable for manufacturing furnace lining and accessories.

9.It is used to make pencils, sandpaper, ceramics and as an abrasive for cutting or polishing.

10.Silicon carbide nanopowder is also used in the production of aerial mirrors. This material is used because it is very hard and resistant to thermal shock. Silicon carbide can also prevent mechanical fatigue, absorb moisture and cause space radiation.

11.Because it has high mechanical strength and lightweight. It limits the impact of armor weight on user performance (mobility and fuel consumption).

12.Because of its special characteristics, silicon carbide nanopowder is an alternative material in a variety of electronic applications, including chemical inertia at all temperatures, thermal shock resistance, hardness and abrasion sintering. Its main application in this industry is in the manufacture of stoves and process components used in the semiconductor industry as well as in electric field classification and surge protection.

170556549422ae29.jpg 

Company Profile

Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and nanomaterials, including boride powder, nitride powder, graphite powder, sulfide powder, 3D printing powder, etc.

The company has a professional technical department and Quality Supervision Department, a well-equipped laboratory, and equipped with advanced testing equipment and after-sales customer service center.
If you are looking for high-quality Silicon Carbide Nanoparticles Nano SiC Powder, please feel free to contact us or click on the needed products to send an inquiry. 

1705565434da5ea6.png 


Packing&Shipment of Silicon Carbide Nanoparticles Nano SiC Powder

We have many different kinds of packing which depend on the Silicon Carbide Nanoparticles Nano SiC Powder quantity.

Silicon Carbide Nanoparticles Nano SiC Powder packing: vacuum packing, 100g, 500g or 1kg/bag, 25kg/barrel, or as your request.

Silicon Carbide Nanoparticles Nano SiC Powder shipping: could be shipped out by sea, by air, by express as soon as possible once payment receipt.

1705565394038b50.png 

 

Payment Methods of Silicon Carbide Nanoparticles Nano SiC Powder

L/C, T/T, Western Union, Paypal, Credit Card etc.


Inquiry

Silicon Carbide Properties

Other NamesCarborundum, alpha sintered SiC, Hexoloy, methanidylidynesilicon,
moissanite, SiC powder
CAS No.409-21-2
Compound FormulaSiC
Molecular Weight40.1
AppearanceGreen to Black or Gray Powder
Melting Point2730 °C
Boiling PointN/A
Density3.0-3.2 g/cm3
Solubility in H2ON/A
Electrical Resistivity1 to 4 10x Ω-m
Specific Heat670 to 1180 J/kg-K
Tensile Strength210 to 370 MPa (Ultimate)
Thermal Conductivity120 to 170 W/m-K
Thermal Expansion4.0 to 4.5 µm/m-K
Young's Modulus370 to 490 Gpa
  
  

Silicon Carbide Health & Safety Information

Signal WordWarning
Hazard StatementsH315-H319-H335
Hazard CodesXi
Risk Codes36/37/38
Safety Statements26-36
Transport InformationN/A


This element has many applications, especially in ceramics, glass, electronics, and aerospace. The chemical properties of scandium oxideScandium oxide is a white solid powder with high melting and boiling points. It is stable at room temperature and is not easily reactive with oxygen in the air. Regarding chemical properties, scandium oxide has strong oxidizing and acidic properties and can react with many elements and compounds. In addition, scandium oxide can also form various complexes, which play important roles in many chemical reactions.Preparation method of scandium oxideThere are two main methods for preparing scandium oxide: the aluminum thermal reduction method and the carbon thermal reduction method. The aluminum thermal reduction method uses aluminum as a reducing agent, mixes scandium dioxide with aluminum powder, heats it to a high temperature, and reduces scandium dioxide to scandium oxide through the thermal reduction effect of aluminum. The C thermal reduction way uses carbon as a reducing agent, mix scandium oxide with carbon and heats it to high temperature. Through the thermal reduction effect of carbon, scandium dioxide is reduced to scandium oxide. Both methods can achieve high yields and purity.The application of scandium oxideScandium oxide has broad application value, mainly manifested in the following aspects:Application in the field of ceramics: Scandium oxide used as  prepare high-performance ceramic materials, such as high alumina ceramics containing scandium oxide and silicon nitride ceramics containing scandium oxide. These ceramic materials have excellent mechanical properties, chemical stability, and high-temperature performance and are widely used in aerospace, energy, and chemical engineering fields.Used in the glass field: These glasses have excellent optical and fluorescence properties and are widely used in optical instruments, displays, lighting and other fields.Electronic materials: Scandium oxide is widely used in preparing electronic materials due to its excellent electrical properties. It can be an insulation layer for electronic devices, improving their insulation performance and stability. In addition, scandium oxide can also be used to prepare electronic ceramic materials, such as capacitors and sensors, to improve their performance and stability.Laser and TV electron gun: Scandium oxide can also be used to manufacture variable wavelength solid-state lasers and TV electron guns.About RBOSCHCORBOSCHCO is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high-quality chemicals and Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. As a leading nanotechnology development manufacturer, RBOSCHCO dominates the market. Our professional work team provides perfect solutions to help improve the efficiency of various industries, create value, and easily cope with various challenges. If you are looking for Sc2O3 powder, please send an email to: sales1@rboschco.com
Jan 18
2024
Potassium silicate (chemical formula: K2SiO3) is an inorganic compound known as potassium water glass or potassium sodium silicate, a common silicate. Potassium silicate is a colorless or slightly yellow solid with high adhesion and fire resistance, widely used in fields such as construction, textiles, papermaking, ceramics, paint, medicine, etc.1. Preparation of potassium silicatePotassium silicate can be prepared by different methods, with the most commonly used method being the reaction of alkali metal silicates with hydroxides or alkali metal oxides at high temperatures. Specifically, sand, potassium hydroxide, or potassium carbonate are mixed and stirred evenly, heated to high temperature and reacted to obtain potassium silicate. Another preparation method is directly reacting silicon powder with potassium hydroxide to generate potassium silicate and hydrogen gas.2. The properties of potassium silicatePotassium silicate is an inorganic salt with a high melting and boiling point, insoluble in water but easily soluble in alkaline solution. The aqueous potassium silicate solution is alkaline, has strong adhesion and fire resistance, and can form a strong protective film. In addition, potassium silicate also has high thermal stability and weather resistance, which can maintain stability at higher temperatures and humidity.3. The application of potassium silicateConstruction industry: Potassium silicate can be used to manufacture building materials such as concrete, cement, and ceramic tiles, improving the durability and strength of the materials.Textile industry: Potassium silicate can be used as a sizing agent, finishing agent, and softener for textiles, improving their wear resistance, wrinkle resistance, and hand feel.Paper industry: Potassium silicate can be used as a coating and reinforcing agent for paper, improving the printing effect and strength of the paper.Ceramic industry: Potassium silicate can be used to prepare and process ceramics, improving the hardness and heat resistance of ceramic products.Paint industry: Potassium silicate can be used as an additive in paint to improve its adhesion and weather resistance.Pharmaceutical industry: Potassium silicate can be used for the Preparation and processing of drugs, such as in the Preparation of drug sustained-release agents and drug carriers.Other fields: Potassium silicate can also be used in electroplating, glass, coatings, and other fields. In electroplating, the corrosion resistance of the electroplating layer can be improved; In the glass, the transparency and hardness of glass can be improved; In coatings, adhesion, and weather resistance can be improved.4. Notes on potassium silicateStorage: Potassium silicate should be stored in a dry, cool, and ventilated warehouse, away from sources of fire and heat. During transportation, it is necessary to prevent rain and moisture.Usage: Potassium silicate has strong alkalinity and can irritate the skin and eyes. Protective glasses and gloves must be worn to avoid direct contact with the skin. In addition, potassium silicate aqueous solution is prone to moisture absorption, and contact with water vapor should be avoided during use.Environmental protection: The production and use of potassium silicate can generate pollutants such as wastewater and exhaust gas, which have a certain impact on the environment. Therefore, effective environmental protection measures should be taken during production and use to reduce environmental pollution.About RBOSCHCOKMPASS is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high-quality chemicals and Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. As a leading nanotechnology development manufacturer, RBOSCHCO dominates the market. Our professional work team provides perfect solutions to help improve the efficiency of various industries, create value, and easily cope with various challenges. If you are looking for Potassium silicate powder, please send an email to: sales1@rboschco.com
Jan 10
2024
Silicon nitride is an important inorganic non-metallic material with excellent physical and chemical properties, exhibiting excellent performance at high temperatures, wear resistance, corrosion resistance, and other aspects. 1. The properties of silicon nitrideSilicon nitride powder (Si3N4) is a ceramic material with a hexagonal crystal structure similar to silicon carbide (SiC). Silicon nitride has a high hardness, second only to diamond and silicon carbide, and has excellent wear and high-temperature resistance. In addition, silicon nitride also has good chemical stability and can maintain stable performance in high-temperature and corrosive environments.2. Preparation method of silicon nitrideThere are various methods for preparing silicon nitride, among which the most commonly used are reaction sintering and hot pressing sintering. The reaction sintering method uses silicon powder and nitrogen at high temperatures to generate silicon nitride. The advantages of this method are low cost, simple process, but low product purity. The hot pressing sintering method prepares silicon nitride ceramics by sintering the raw material powder at high temperatures and high pressures. The advantages of this method are high product purity and excellent performance, but the process is complex, and the cost is high.3. Application fields of silicon nitrideMechanical seal: Silicon nitride is one of the important materials in the field of mechanical seals as to its high hardness, wear resistance, and high-temperature resistance. It can be used as a material for sealing rings, gaskets, bearings and other components, with a long service life and good sealing performance.Automotive industry: Silicon nitride ceramic materials have excellent high-temperature and corrosion resistance and can be used to make automotive engine components, such as turbochargers, gas cylinders, etc. by the way, silicon nitride can also be used to make automotive brake and clutch pads with high wear and temperature resistance.Silicon nitride has broad application prospects in the field of new energy, mainly manifested in the following aspects:Solar energy field: Silicon nitride can be used as a support structure for solar panels, with high strength, high heat resistance, good insulation performance and stability. It can withstand the ultraviolet and thermal radiation of sunlight, ensuring the long-term stable operation of solar panels. In addition, silicon nitride powder can be used as a packaging material for electronic components of solar inverters, improving their reliability and stability.In fuel cells, silicon nitride can serve as a supporting structure for fuel cells, with good corrosion resistance and high-temperature stability. In fuel cells, silicon nitride can withstand high current density and high-temperature environments, ensuring the long-term stable operation of fuel cells.Wind energy field: Silicon nitride can manufacture components such as bearings and seals in wind turbines with high wear and corrosion resistance. It can withstand harsh environmental conditions and significant mechanical stress, ensuring the long-term reliable operation of wind turbines.In the field of new energy vehicles, silicon nitride can be used as a component material for new energy vehicles, such as engine components, motor support structures, etc. Due to its high strength, high heat resistance, good insulation performance and stability, it can increase  safety and reliability of the new energy vehicles.Aerospace: Silicon nitride ceramic materials have excellent mechanical properties and high-temperature stability and can be used to make aircraft and rocket engine components, such as combustion chambers, nozzles, etc. In addition, silicon nitride powder can also be used to produce thermal protection materials for spacecraft and satellite solar panels.Electronic industry: Silicon nitride ceramic materials have good insulation and stability properties and can be used to make electronic components and integrated circuit packaging materials. In addition, silicon nitride powder can be used to make supporting structures and heat sinks for electronic devices.Medical field: Silicon nitride ceramic materials have good biocompatibility and stability and can be used to make medical devices such as artificial joints and dental materials. In addition, silicon nitride powder can be used to make structural components and support structures for medical devices.Other fields: In addition to the above fields, silicon nitride ceramic materials powder can be used in the petrochemical industry, shipbuilding, sports equipment and other fields. For example, silicon nitride can make components like oil pipelines and valves. And to make high-end sports equipment such as table tennis rackets and badminton rackets.About RBOSCHCOKMPASS is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high-quality chemicals and Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. As a leading nanotechnology development manufacturer, RBOSCHCO dominates the market. Our professional work team provides perfect solutions to help improve the efficiency of various industries, create value, and easily cope with various challenges. If you are looking for Si3N4 powder, please send an email to: sales1@rboschco.com
Jan 03
2024
Manganese dioxide is a common inorganic compound with multiple uses. Manganese dioxide is widely used in the chemical industry to prepare various manganese salts, catalysts, batteries, and other electronic chemicals.1. PreparationManganese dioxide can be prepared through various methods, among which the most common is the chemical reaction method. This method uses manganese salts as raw materials and generates manganese dioxide through oxidation or electrolysis reactions. The specific preparation process is as follows:Weigh a certain amount of manganese salt solution, such as manganese sulfate or manganese chloride;Add an appropriate amount of oxidant, such as nitric acid, hydrogen peroxide, or potassium permanganate, to the solution;React at a certain temperature and pressure to generate manganese dioxide precipitate;Filter, wash, and dry the residue;High-temperature calcination of manganese dioxide is carried out to obtain high-purity manganese dioxide.2. PropertyPhysical properties: Manganese dioxide is a black solid powder with a face-centered cubic crystal structure. Under standard conditions, the density is 5.02g/cm ³。Chemical properties: Manganese dioxide has high oxidizing and reducing properties. Under acidic conditions, manganese dioxide can react with hydrogen ions to generate manganese ions and water. Under alkaline conditions, manganese dioxide can react with hydroxide ions to produce manganese hydroxide and water. In addition, manganese dioxide can also react with some reducing substances, such as hydrogen gas, carbon monoxide, etc.3. ApplicationManganese dioxide is widely used in multiple fields as to its unique physical and chemical properties. The following are its main application areas:Battery material: Manganese dioxide is widely used as a battery material due to its excellent electrochemical performance. In dry batteries, manganese dioxide can generate stable voltage and current when used together with carbon rods as a positive electrode material. In addition, manganese dioxide is also used to prepare positive electrode materials for rechargeable batteries, such as lithium manganese dioxide in lithium-ion batteries.Catalyst: Manganese dioxide can catalyze various reactions, such as the oxidation of alcohols, hydrocarbons, and carbon monoxide. Manganese dioxide catalysts have the advantages of high activity, good stability, and low cost and are, therefore, widely used in industry.Pigments and coatings: Manganese dioxide can be made into black pigments and coatings, widely used in fields such as architecture, furniture, and automobiles. Various colors and textures can be prepared to meet different needs when mixed with other pigments.Other fields: Besides the abovementioned application, manganese dioxide can prepare magnetic materials, electronic components, etc. With the continuous development of technology, its application prospects will be even broader.About RBOSCHCORBOSCHCO is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high-quality chemicals and Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. As a leading nanotechnology development manufacturer, RBOSCHCO dominates the market. Our professional work team provides perfect solutions to help improve the efficiency of various industries, create value, and easily cope with various challenges. If you are looking for MnO2 powder, please send an email to: sales1@rboschco.com
Dec 27
2023
Tungsten disulfide is a chemical substance with significant application value.1. Properties of tungsten disulfideTungsten disulfide is a black-gray solid with the molecular formula WS2. It has metallic luster, semiconductor properties, and high chemical and thermal stability. The molecular structure of tungsten disulfide consists of two sulfur atoms and a large radius tungsten atom, where a six-membered ring is formed between the sulfur atoms, and the tungsten atom is located at the center of the ring. This unique structure gives tungsten disulfide high electron mobility and conductivity.2. Preparation of tungsten disulfideThe preparation methods of tungsten disulfide mainly include chemical vapor deposition (CVD) and high-temperature synthesis. CVD is the most commonly used preparation method, which generates tungsten disulfide thin films by reacting gases containing tungsten and sulfur at high temperatures. The high-temperature synthesis rule is to heat a mixture of tungsten and sulfur powder under high temperature and pressure conditions to generate tungsten disulfide crystals.3. Application of tungsten disulfideIn the field of electronic devicesTungsten disulfide is widely used in electronic devices due to its semiconductor properties and high electron mobility. It can be used as an electrode material for electronic components, such as the gate material for field-effect transistors (FETs) and the electrode material for solar cells. In addition, tungsten disulfide can also be used as a storage medium for electronic memory materials, such as phase change memory (PCRAM).Lubrication fieldTungsten disulfide has excellent lubricating properties and can be used as an additive in lubricants and greases. Under high temperature and high load conditions, tungsten disulfide can form a dense protective film, reduce friction and wear, and improve equipment's operational efficiency and lifespan.Catalyst fieldTungsten disulfide can be used as a catalyst and catalyst carrier and is widely used in petrochemicals and environmental protection fields. In petrochemicals, tungsten disulfide can serve as a catalyst to improve the efficiency and yield of petroleum cracking. Tungsten disulfide can be a catalyst for treating waste gas and wastewater in environmental protection.Material coating fieldTungsten disulfide is widely used in material coatings due to its good hardness, wear resistance, and excellent corrosion resistance. It can be used as a coating material for metal surface protection, wear resistance, and reduction. For example, mechanical equipment used in marine environments can be protected with tungsten disulfide coatings.Tungsten disulfide has a wide range of applications, including lubrication, catalysts, and material coatings mentioned above, as well as the following:Catalyst carrier: Tungsten disulfide has high hardness, wear resistance, and excellent corrosion resistance and can be used as a catalyst carrier in fields such as petrochemicals and environmental protection.Electronic materials: Tungsten disulfide has excellent electronic conductivity and stability and can be used to prepare electrode materials, electronic devices, and semiconductor materials.Aerosol: Tungsten disulfide is often used as an ultrafine scale crystal for aerosols, which has the advantages of simple preparation process equipment, no environmental pollution, and safe and reliable operation.Lubrication of mechanical components: Tungsten disulfide can be used as a forging and stamping lubricant in combination with other materials, which can extend the service life of molds and improve product smoothness.Self-lubricating components: Tungsten disulfide can be used as a filling material in combination with polytetrafluoroethylene and nylon to make self-lubricating components.About RBOSCHCORBOSCHCO is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high-quality chemicals and Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. As a leading nanotechnology development manufacturer, RBOSCHCO dominates the market. Our professional work team provides perfect solutions to help improve the efficiency of various industries, create value, and easily cope with various challenges. If you are looking for WS2 powder, please send an email to: sales1@rboschco.com
Dec 20
2023
Tantalum oxide is a compound with a high melting point, high chemical stability, and excellent electrical properties, widely used in fields such as electronics, optics, ceramics, etc. 1. Physical and chemical properties of tantalum oxideTantalum oxide (Ta2O5) is a white or light yellow powder with a high melting point (2980 ℃), high hardness (Mohs hardness of 7.5), and high chemical stability. Its molecular formula is Ta2O5, with a molecular weight of 337.83. Tantalum oxide is insoluble in water at room temperature but can dissolve in acidic and alkaline solutions.2. Preparation method of tantalum oxideDirect synthesis methodThe direct synthesis method involves reacting tantalum powder with high-temperature oxygen to produce tantalum oxide. This method is simple but requires high-temperature conditions and a slow reaction rate.Vapor deposition methodThe vapor deposition method reacts tantalum source gas with oxygen to generate tantalum oxide thin films at low temperatures. This method has high purity and density characteristics and is suitable for preparing high-performance tantalum oxide films.Sol-gel methodThe Sol-gel process is a method of preparing tantalum oxide through the Sol gel process. This way has the advantages of simple operation and low cost, but it needs to control conditions such as gel time and temperature.3. Application fields of tantalum oxideElectronic fieldAs a high-performance dielectric material, Tantalum oxide has a wide range of applications in electronics. For example, in manufacturing thin film capacitors, tantalum oxide is used as a dielectric layer, which has advantages such as high dielectric constant, low loss, and high stability. In addition, tantalum oxide can manufacture components such as gates and electrodes in electronic devices.Optical fieldTantalum oxide also has extensive applications in the field of optics. For example, tantalum oxide is used as a reflector or window component in optical waveguide devices, with advantages such as high reflectivity and low loss. In addition, tantalum oxide can also be used to manufacture optical thin films, gratings and other optical components.Ceramic fieldTantalum oxide also has extensive applications in the field of ceramics. For example, in high-temperature ceramic materials, tantalum oxide can be used as an additive or reinforcing agent to improve the material's mechanical properties and high-temperature resistance. In addition, tantalum oxide can also be used to manufacture high-performance ceramic products such as ceramic blades and bearings.4. Summary and OutlookAs a high-performance compound, Tantalum oxide has broad application prospects in fields such as electronics, optics, and ceramics. With the continuous progress of technology and the expansion of applications, the demand for tantalum oxide will continue to increase. Therefore, strengthening the research on the preparation technology and expanding the application field of tantalum oxide will be important research directions in the future. Meanwhile, with the continuous improvement of environmental awareness and the implementation of sustainable development strategies, the preparation technology of green environmental protection will also become an essential trend for future development.About RBOSCHCORBOSCHCO is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high-quality chemicals and Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. As a leading nanotechnology development manufacturer, RBOSCHCO dominates the market. Our professional work team provides perfect solutions to help improve the efficiency of various industries, create value, and easily cope with various challenges. If you are looking for Ta2O5 powder, please send an email to: sales1@rboschco.com
Dec 13
2023
Copper oxide CuO is a standard copper oxide with a wide range of applications. It is a semiconductor material that can manufacture electronic devices and batteries. In addition, copper oxide is also used to manufacture catalysts, pigments, and other special oxides. Therefore, understanding copper oxide's production process and technology is crucial for meeting the market demand in these application areas.Production processThere are two main production methods for copper oxide: direct oxidation, which prepares copper oxide by directly oxidizing copper ore or copper metal, and indirect oxidation, which prepares copper oxide by reducing copper-containing compounds.Direct oxidation methodDirect oxidation is one of the most commonly used methods for producing copper oxide. This process mainly includes steps such as crushing, screening, grinding, leaching, and oxidation:The copper ore is crushed into particles of appropriate size and then screened and ground to remove impurities and improve the purity of copper.Copper is dissolved from the ore through a chemical leaching process to form copper ions.Copper ions are oxidized to copper oxide through oxidants such as air or oxygen.The advantages of the direct oxidation method are a mature process, simple operation, and low cost. However, the direct oxidation method also has some drawbacks, such as low ore grade, high energy consumption, and severe environmental pollution. Therefore, the production process needs to take corresponding measures to reduce energy consumption and environmental pollution.Indirect oxidation methodThe indirect oxidation method is a method of preparing copper oxide by reducing copper-containing compounds. This process mainly includes steps such as dissolution, pH adjustment, reduction, and oxidation:Dissolve the copper-containing compound in an appropriate solvent to form copper ions.By adjusting the pH value, copper ions precipitate into copper hydroxide.Copper hydroxide is reduced to metallic copper using reducing agents such as formaldehyde or acetylene.The metal copper is oxidized to copper oxide through an oxidant.The advantage of the indirect oxidation method is that high-purity copper oxide can be obtained by controlling reaction conditions. In addition, the indirect oxidation method can also treat copper-containing waste and achieve resource recovery and utilization. However, the indirect oxidation method also has some drawbacks, such as the high cost of using many organic solvents and reducing agents in production.Production technologyBoiling furnace roasting technologyBoiling furnace roasting technology is a commonly used method for producing copper oxide. This technology involves adding copper ore to a boiling furnace and reacting with oxygen at high temperatures to produce copper oxide. The advantages of fluidized bed furnace roasting technology are high energy utilization, large production capacity, and good product quality. However, boiling furnace roasting technology has drawbacks, such as high equipment investment, high maintenance costs, and significant environmental pollution.Spray drying technologySpray drying technology is a method to transform copper-containing solutions into copper oxide powder through spray drying equipment. The advantage of this technology is that it can complete the drying process in a short time, with high product purity and uniform particle size. In addition, the spray drying technology can also be used to treat copper-containing waste materials and realize the recycling of resources. However, spray drying technology has shortcomings, such as significant equipment investment, high operating costs, and greater environmental pollution.Chemical vapor deposition technologyChemical vapor deposition technology converts copper-containing gases into copper oxide through chemical reactions at high temperatures. The advantages of this technology are the ability to obtain high-purity copper oxide, controllable particle size, and environmentally friendly production. However, chemical vapor deposition technology has drawbacks, such as high equipment investment, operating costs, and low production efficiency.About RBOSCHCORBOSCHCO is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high-quality chemicals and Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. As a leading nanotechnology development manufacturer, RBOSCHCO dominates the market. Our professional work team provides perfect solutions to help improve the efficiency of various industries, create value, and easily cope with various challenges. If you are looking for CuO powder, please send an email to: sales2@nanotrun.com
Dec 06
2023
Boron nitride is a super strong material with extremely high heat resistance and chemical stability, which has been widely used in many fields in recent years.1. With the continuous progress of technology, people's requirements for material properties are also increasing. In this context, boron nitride has gradually attracted people's attention as a material with excellent properties. Boron nitride has a high melting point, hardness, and chemical stability, so it has many applications in many fields. This article will focus on introducing the basic properties, preparation methods, application fields, and future development trends of boron nitride to provide a reference for research and application in related fields.2. Basic properties of boron nitrideBoron nitride is a new type of material with a hexagonal crystal structure similar to graphite, and its basic unit is the molecular structure of B12N12. This structure gives boron nitride excellent properties such as high melting point, hardness, and chemical stability. According to different preparation methods and additives, boron nitride can present different colors, including white, black, and gray. In addition, boron nitride also has excellent electrical insulation, thermal conductivity, and corrosion resistance, making it widely used in many fields.3. Preparation method of boron nitrideThe preparation methods of boron nitride mainly include high-temperature and high-pressure synthesis methods and chemical vapor deposition methods. Among them, the high-temperature and high-pressure synthesis method is one of the most commonly used preparation methods. This method synthesizes B and N elements under high temperature and pressure conditions to obtain boron nitride powder. The law of chemical vapor deposition is to react gases containing B and N elements under high-temperature conditions to generate boron nitride thin films. The particle size, purity, and morphology of boron nitride powder or film obtained by different preparation methods vary, so choosing the appropriate method according to the actual application needs is necessary.4. Application fields of boron nitrideDue to its excellent performance, boron nitride has many applications in many fields. The following are the main application areas of boron nitride:Electronic industry: Boron nitride has excellent insulation and thermal conductivity, making it suitable for manufacturing electronic components and circuit boards. In addition, boron nitride can also be used to manufacture high-temperature electronic devices and integrated circuits.Mechanical manufacturing: Boron nitride has high hardness and wear resistance, so it can manufacture high-strength and corrosion-resistant mechanical parts and cutting tools. In addition, boron nitride can also be used to manufacture mechanical components such as high-temperature bearings and gears.Aerospace: Due to its excellent high-temperature resistance and chemical stability, boron nitride can manufacture components for aircraft, rockets, and other aerospace vehicles. In addition, boron nitride can also be used to manufacture high-temperature protective clothing and insulation materials.Medical field: Boron nitride has excellent biocompatibility and chemical stability, making it suitable for manufacturing medical devices and biomaterials. For example, boron nitride can manufacture medical devices such as artificial joints and teeth.Other fields: Boron nitride can manufacture optical components and coatings besides the abovementioned application. In addition, due to its excellent electrical insulation and thermal conductivity, boron nitride can also be used to manufacture heat sinks for power equipment and electronic components.5. The Future Development Trends of Boron NitrideWith the continuous progress of technology and the increasing demand for applications, boron nitride as a super strong material will be widely used and developed. The following are the future development trends of boron nitride:Research and development of new materials: With the continuous progress of technology and the increasing demand for applications, people will continue to develop new types of boron nitride materials to meet the needs of different fields. For example, they are improving the performance of boron nitride or developing new functional characteristics by adding other elements or using different preparation methods.The application of nanotechnology: With the continuous development of nanotechnology, people will delve deeper into the nanostructure and performance relationship of boron nitride. By controlling factors such as the nanostructure and morphology of boron nitride, its performance can be improved, or new functional characteristics can be developed, providing more possibilities for future technological applications.Multidisciplinary application: With the continuous deepening and development of interdisciplinary research, people will conduct in-depth research and application of boron nitride from different perspectives. For example, boron nitride can be combined with fields such as biology, medicine, and environmental science to develop new biomaterials, drug carriers, and environmentally friendly materials.Application of high-performance composite materials: By combining boron nitride with other materials to prepare high-performance composite materials, the advantages of boron nitride can be better utilized, and its application range can be expanded. For example, it can prepare high-strength, wear-resistant, and corrosion-resistant composite materials by combining boron nitride with materials such as metals or ceramics and applying them in mechanical manufacturing and aerospace.Green and environmentally friendly production: With the continuous improvement of environmental awareness and the need for sustainable development, more attention will be paid to boron nitride's green and environmentally friendly production. By improving preparation methods and using environmentally friendly raw materials, environmental pollution in the production process of boron nitride can be reduced, and sustainable production can be achieved.About RBOSCHCORBOSCHCO is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high-quality chemicals and Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. As a leading nanotechnology development manufacturer, RBOSCHCO dominates the market. Our professional work team provides perfect solutions to help improve the efficiency of various industries, create value, and easily cope with various challenges. If you are looking for BN powder, please send an email to: sales1@rboschco.com
Nov 30
2023
0086-18937960017 sales1@rboschco.com skype whatsapp
  • WhatsApphttps://www.rboschco.com/mobile/